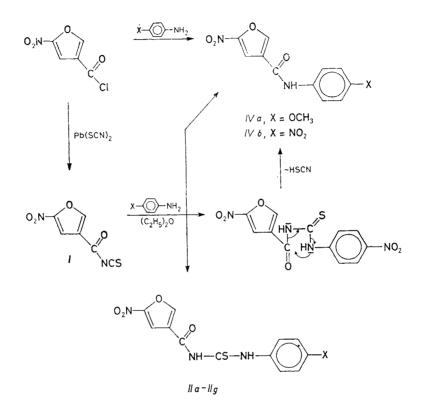
REACTIONS OF AROMATIC AMINES WITH 5-NITRO-3-FUROYL AND 5-NITRO-2-FUROYL ISOTHIOCYANATES

Adolf Jurášek, Jarmila Štetinová, Jaroslav Kováč, Vladimír Žvak, Ján Leško, Miloslava Dandárová and Eva Vlniešková

Department of Organic Chemistry, Slovak Technical University, 812 37 Bratislava

> Received March 14, 1988 Accepted June 15, 1988


5-Nitro-3-furoyl isothiocyanate reacts with 4-X-anilines $(X = H, CH_3, OH, N(C_2H_5)_2, NHCOCH_3, Cl, Br)$ to give the corresponding N-(5-nitro-3-furoyl)-N'-(4-X-phenyl)thioureas, in contrast to 4-methoxyaniline and 4-nitroaniline, which afford 5-nitro-3-furancarboxylic acid amides in a rather anomalous way. Formation of these amides is discussed and some properties of 2- and 3-substituted thioureas related to 5-nitrofuran are compared.

The known 5-substituted 2-furoylthiocarbanilides¹ and numerous further types of these compounds² are reported to exhibit an antibacterial activity. A high biological effect show also the well investigated 5-nitro-2-substituted furan derivatives³ some of which are utilized in practice⁴. So far, no much information is known on the biological activity and properties of 5-nitrofuran derivatives characteristic of one free α -position and variously substituted β -positions.

This paper presents the synthesis of N-(5-nitro-3-furoyl)-N'-arylthioureas prepared by reacting 5-nitro-3-furoyl isothiocyanate (I) with aromatic amines (Scheme 1). The starting isothiocyanate I was synthesized in 91% yield from 5-nitro-3-furoyl chloride and anhydrous lead thiocyanide in bezene. Substantially lower yields afforded the reaction with potassium, sodium or ammonium thiocyanides in acetone. It was found that treatment of isocyanate I with amines under conditions given in the experimental section afforded pure thioureas II when using 4-X-anilines with X = H, CH₃, OH, N(C₂H₅)₂, NHCOCH₃, Cl and Br (Table I) only, where amines add to the NCS grouping. This reaction proceeds anomalously with 4-methoxyaniline and 4-nitroaniline, since no sulfur was found in the purified compound. Elemental analysis, spectral data and standards prepared by an alternative route show that the products are the corresponding amides of 5-nitro-3-furancarboxylic acid (IVa, IVb). The origination of these amides could be rationalized either by a direct substitution of the NCS group, or by an intramolecular degradation of the primarily formed thiourea.

To verify the above-mentioned possibilities, the isothiocyanate I was reacted with 4-methoxyaniline also at a lowered tempetature $(-10^{\circ}C)$ and the reaction course

was monitored by thin-layer chromatography on Silufol sheets. As found, even at such a temperature, where the reaction commences, exclusively the corresponding 4-methoxyphenylamide IVa was formed, thus evidencing a direct substitution of

SCHEME 1

isothiocyanate group by the amine. It is noteworthy that the isomeric 5-nitro-2--furoyl isothiocyanate does not yield the proper amide with 4-methoxyaniline, but N-(4-methoxyphenyl)-N'-(5-nitro-2-furoyl)thiourea of m.p. $173-177^{\circ}C$ (ref.¹ $175-176^{\circ}C$). Melting point of this substance after crystallization from ethanol dropped to $148-150^{\circ}C$, but the mass and ¹H NMR spectra proved this compound to be pure thiourea. The change in m.p. might be due to polymorfism already reported with other nitrofuran derivatives⁵. Isocyanate I was treated with 4-nitroaniline at 0°C, because at a lower temperature the reaction did not proceed. The mixture was separated by chromatography over silica gel in benzene-ether 4 : 6 to give compound of m.p. $148-154^{\circ}C$, which is thermolabile both in crystalline form and in solution. Elemental analysis showed that the content of sulfur (7.01%) is approximately by 2.5% lower than required for thiourea, but its IR spectrum displayed a characteristic band of thiourea NH—C=S at $1\,120\,\mathrm{cm^{-1}}$. Thin-layer chromatography on Silufol sheets showed that this compound in solution passed into the corresponding 4-nitrophenylamide *IVb* at about 5°C; the latter can probably originate by an N,N-transacylation of the primarily formed thiourea (Scheme 1). A recrystallization of a sample afforded a product, which successively loses sulfur and its temperature rises up to that of the pure amide *IVb*. This decomposition route of thioureas was evidenced by the ¹⁵N isotope when investigating thioureas synthesized from benzoyl isothiocyanate and aminoazoles⁶.

Some known^{1,7} and new N-(5-nitro-2-furoyl)-N'-arylthioureas III (Tables I, II) were synthesized (the analyses and spectral characteristics evidenced their thiourea

Compound X	Formula (M.w.)	M.p., °C Yield, %	Calculated/Found		$\lambda_{\max},$	nm
			% N	% S	(log ε,	m ² mol ⁻ 1)
IIa	C ₁₂ H ₉ N ₃ O ₄ S	179—181 ^a	14·43	10∙98	242	298
H	(291·3)	(90)	14·41	10∙35	(3·00)	(3·24)
IIb	$C_{13}H_{11}N_{3}O_{4}S$	164·5—167 ^b	13·77	10·05	236	294
СН ₃	(305·3)	(59)	13·26	9·95	(3·04)	(3·03)
IIс	C ₁₂ H ₉ N ₃ O ₄ S	$164 - 170^{b}$ (99)	14·42	10·99	245	292
ОН	(291·3)		14·43	10·51	(2·70)	(3·08)
IId	$C_{16}H_{18}N_4O_5S$	$155 - 158^b$ (98)	15· 46	8·85	236	272
N(C ₂ H ₅) ₂	(362·4)		15·45	8·88	(3·03)	(3·26)
IIe	$C_{14}H_{12}N_4O_5S$	165—171 ^b	16∙08	9·21	261	291
NHCOCH ₃	(348-3)	(96)	15∙56	9·27	(3·14)	(3·12)
IIf	C ₁₂ H ₈ ClN ₃ O ₄ S	154—156 ^a	12·90	9·85	239	291
Cl	(325·7)	(83)	12·23	9·49	(3·09)	(3·06)
<i>Hg</i>	C ₁₂ H ₈ BrN ₃ O ₄ S	175·5—178 ^b	11·35	8∙66	254	289
Br	(370·2)	(97)	11·22	8∙52	(3·09)	(3·04)
IIId	$C_{14}H_{12}N_4O_5S$	211-213 ^a	16∙66	9·52	265	—
NHCOCH ₃	(348.3)	(98)	16∙31	9·30	(3·26)	
<i>IIIe</i>	C ₁₂ H ₈ BrN ₃ O ₄ S	155—157 ^a	11·35	8·64	239	303
Br	(370·2)	(45)	11·34	8·71	(3·23)	(3·06)

TABLE I N-(5-Nitro-3-furoyl)-N'-(4-X-phenyl)thioureas IIa-IIg and N-(5-nitro-2-furoyl)-N'-(4-X-phenyl) thioureas IIIe-IIId

Crystallized from: ^a ethanol; ^b methanol.

Collect. Czech. Chem. Commun. (Vol. 54) (1989)

nature) to compare properties of 2- and 3-furan substituted thioureas. The structure of new compounds was backed by elemental and spectral analyses (Tables I, II). The IR spectra exhibited absorption bands $\tilde{v}(NH)$ at $3\,175-3\,380\,\mathrm{cm}^{-1}$, $\tilde{v}(CO)$ at almost 1 670 cm⁻¹, $\tilde{v}(NO_2)_{as}$ at 1 540-1 530 cm⁻¹, and $\tilde{v}(NO_2)_s$ at 1 360--1 340 cm⁻¹. Bands indicative of NHC=S, furan $\tilde{v}(C-O-C)$ and $\gamma(CH)$ appeared

TABLE II

¹ H NMR spectra of N-(5-nitro-3-furoyl)-N'-arylthioureas II and N-(5-nitro-2-furoyl)-N'-arylthioureas III (δ , ppm; J, Hz)

Compound X	H-2ª	H-4 ^b	H-2' ^c	H-3' ^c	J(2', 3') ^c
IIa H	8∙77 d	8·11 d	7·25 —	7·87 m	_
IIb CH ₃	8·45 d	7·95 d	7·15 m	7•64 m	8.5
IIc OH	8•74 d	8·03 d	6·87 m	7∙50 m	8.6
IId N(C ₂ H ₅) ₂	8∙72 d	8∙08 d	6·73 m	7·53 m	9.1
IIe NHCOCH ₃	8∙74 d	8∙08 d	7.68 ^d	7.68 ^d	-
IIf Cl	8•76 d	8∙10 d	7∙44 m	7·78 m	8.9
<i>IIg</i> Br	8∙76 d	8∙09 đ	7·59 m	7·74 m	9.1
<i>IIIa</i> H	7∙68 d	7∙80 d	7.25 —	7·87 m	—
IIIb CH ₃	7∙68 đ	7·81 d	7·23 m	7∙64 m	8 ·6
IIIc OCH ₃	7·69 đ	7·82 d	7·97 m	7∙75 m	9.0
IIId NHCOCH ₃	7∙69 d	7∙82 d	7·69 ^d	7·69 ^d	_
IIIe Br	7∙69 d	7·83 d	7·59 m	7…77 m	8·6

^a H-3 for compounds IIIa-IIIe; ^b for IIa-IIg J(1,4) = 1.1 Hz, for IIIa-IIIe J(3,4) = 3.9 Hz;

^c apostrophized numerals refer to o- and *m*-carbons of the benzene ring; ^d bs (4 H).

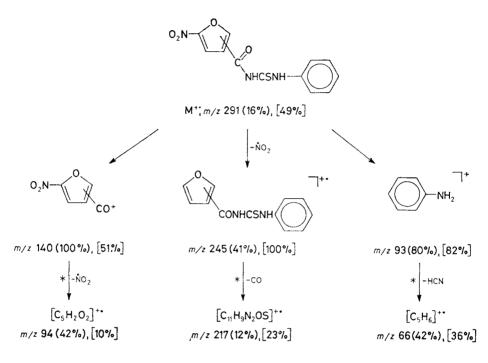
Collect. Czech. Chem. Commun. (Vol. 54) (1989)

702

at 1120-1140, 1005-1080 and 850-870 cm⁻¹, respectively. The UV spectra (Table I) of all thioureas displayed two complex bands involving electronic transitions localized in the 5-nitrofuran and bezene moieties of the molecule; for 3,5-disubstituted derivatives IIa-IIg and for 2,5-disubstited derivatives III the absorptions are at 236-261 nm, 272-298 nm and at 239-265 nm, 303-305 nm, respectively. Although the differences are not great, still the absorption bands for all 3-substituted derivatives are hypsochromically shifted up to 15 nm due to a weak delocalization of π -electrons in these compounds.

The ¹H NMR data of synthesized compounds are listed in Table II. The signals of protons H-2 and H-4 of 5-nitro-3-substituted derivatives IIa-IIg appeared at $\delta 8.45-8.77$ and 7.95-8.11, respectively. The chemical shifts of protons H-3 and H-4 of derivatives IIIa-IIIe occured at $\delta 7.68-7.69$ and 7.80-7.83, respectively.

The fragmentation pattern of molecular radical ions of *II* and *III* is similar, nevertheless relative intensities of fragment ions being formed are considerably different (Table III, Scheme 2). Scheme 2 shows the relative abundances (in paren-


TABLE III

Mass spectral data of some compounds synthesized

Compound	m/z (relative abundances ^a)
IIa	291, M ⁺⁺ (16), 140 (100), 93 (80), 135 (51), 77 (48), 94 (42), 245 (41), 66 (40), 99 (30), 65 (25), 51 (23)
IIb	305, M ⁺⁺ (23), 140 (100), 106 (99), 107 (72), 149 (53), 91 (46), 259 (43), 94 (37), 77 (26), 99 (24)
IIf	325, M ⁺ * (91), 251 (100), 55 (46), 192 (42), 111 (40), 138 (36), 253 (36), 327 (34), 75 (28), 324 (23)
IIIa	291, M ⁺⁺ (51), 245 (100), 93 (84), 77 (77), 135 (68), 140 (54), 119 (51), 71 (38), 66 (38), 127 (33)
IIIb	305, M ⁺⁺ (42), 259 (100), 106 (76), 149 (49), 107 (48), 91 (48), 140 (46), 133 (30), 71 (24, 77 (23),
IIIc	321, M ⁺⁺ (42), 165 (100), 140 (65), 108 (61), 275 (55), 150 (48), 123 (36), 122 (29), 80 (18), 81 (16)
IIId	348, M ⁺⁺ (10), 108 (100), 140 (97), 150 (72), 107 (52), 80 (33), 66 (27), 198 (10), 59 (10), 192 (8), 301 (3)
IIIe	$369/371$, $M^{+}/M^{+} + 2$ (27/27), 140 (100), 45 (85), 325 (72), 323 (68), 171 (67), 173 (64), 215 (52), 213 (50), 65 (46), 92 (43)

^a The table lists relative abundances of both M^+ and 9-10 most intense peaks.

Collect. Czech. Chem. Commun. (Vol. 54) (1989)

theses) of 3,5-disubstituted IIa and in brackets those of the 2,5-disubstituted isomer IIIa.

SCHEME 2

EXPERIMENTAL

The melting points were determined on a Kofler micro hot-stage, the ¹H NMR spectra of hexadeuterioacetone solutions were measured with a Tesla BS 487 C apparatus operating at 80 MHz, tetramethylsilane being the internal reference. The IR, UV and mass spectra were recorded with UR 20 (Zeiss, Jena; 1 mg of substance per 300 mg of KBr), Specord UV VIS (Zeiss, Jena; $5 \cdot 10^{-5} \text{ mol I}^{-1}$ dioxane solutions) and MS 902 S (AEI-Kratos; 70 eV electron energy, 120--140°C ion source temperature), respectively.

5-Nitro-3-furoyl Isothiocyanate (I)

Dry lead thiocyanide (11.3 g, 35 mmol) and 5-nitro-3-furoyl chloride (6·1 g, 35 mmol) in benzene were refluxed with stirring for 3 h under exclusion of air moisture. The inorganic products were filtered off, washed with bezene, the solvent was distilled off under diminished pressure and the residue was distilled. B.p. $143^{\circ}C/2$ kPa, yield 6·3 g (91%). The product was crystallized from ether-hexane, m.p. $39-40^{\circ}C$. For $C_6H_2N_2O_4S$ (198·2) calculated: $14\cdot14\%$ N, $16\cdot16\%$ S; found: $13\cdot98\%$ N, $15\cdot47\%$ S. IR spectrum, cm⁻¹: $1930 \tilde{\nu}(NCS)$, $1700 \tilde{\nu}(CO)$, $1540 \tilde{\nu}(NO_2)_{as}$, $1360 \tilde{\nu}(NO_2)_s$, $1060 \tilde{\nu}(C-O-C)$, $850 \gamma(C-H)$. ¹H NMR spectrum: $7\cdot82$ d, 1 H (H-4); $8\cdot73$ d, 1 H (H-2).

Collect. Czech. Chem. Commun. (Vol. 54) (1989)

N-(5-Nitro-3-furoyl)-N'-(4-X-phenyl)thioureas IIa-IIg

A mixture of 5-nitro-3-furoyl isothiocyanate (1.98 g, 10 mmol) in ether (25 ml) was added to the ethereal solution of the respective amine (10 mmol, 30-50 ml) at $5-10^{\circ}$ C during 15 min. The mixture was stirred for 3 h and then left to stand at room temperature for 24 h. The separated yellow precipitate was filtered off and the product was crystallized from alcohol.

4-Methoxyphenylamide (*IVa*) and 4-Nitrophenylamide (*IVb*) of 5-Nitro-3-furancarboxylic Acid

The particular amine (8 mmol) in a suitable solvent (10 ml) was successively added to a stirred dioxane solution (10 ml) of 5-nitro-3-furoyl chloride (0.7 g, 4 mmol) at $10-15^{\circ}$ C. The mixture was poured into water after 15 min, acidified with dilute hydrochloric acid, the product was filtered off and crystallized from ethanol.

Amide IVa: m.p. 184–185°C, yield 75%. For $C_{13}H_{10}N_2O_5$ (262·2) calculated: 10·69% N; found: 10·79% N; M⁺⁺ 262.

Amide IVb: m.p. 236–237°C, yield 50%. For $C_{11}H_7N_3O_6$ (277.2). calculated: 15.16% N; found 15.26% N; M⁺⁺ 277.

REFERENCES

- 1. Gakh I. G., Nazarova Z. N.: Zh. Org. Khim 30, 2183 (1960).
- 2. Bogatskii A. V., Lukyanenko N. G., Krivichenko T. I.: Khim. Geterotsikl. Soedin. 6, 723 (1983).
- 3. Miura K., Reckendorf H. K. in the book: *Progress in Medicinal Chemistry* (G. P. Ellis and G. B. West, Eds), Vol. 5, pp. 320-381. Butterworth, London 1967.
- 4. Negwer M.: Organisch-chemische Arzneimittel und ihre Synonyma, Band I. Akademie Verlag, Berlin 1971.
- 5. Krapivin G. D., Jurášek A., Kováč J., Kul'nevich V. G.: Collect. Czech. Chem. Commun. 49, 2285 (1984).
- 6. Schrepfer J. A., Capnano L., Schmidt H. L.: Chem. Ber. 106, 2925 (1973).
- 7. Masias A., Otaso E., Beletskaya I. P.: Zh. Org. Khim. 17, 681 (1982).

Translated by Z. Votický.